当前位置:首页 > 通知通告 > 特别项目 >
郑钢顶尖科技精英培育计划奖学金补充申报通知(急)
时间:2019-01-11 14:33 来源:未知 作者:stuex  点击:

为进一步深化和服务南京大学双一流建设目标,鼓励和支持学生开展科学探索性研究,郑钢校友、菁英人才培育中心、国际合作与交流处对接国外一流大学和一流学科实验室,实施郑钢顶尖科技精英培育计划,并设立郑钢顶尖科技精英培育计划奖学金支持计划开展。有关事项通知如下:

一、 资助对象和范围
1
、奖学金针对我校各理工医科院系三年级本科生(或五年制专业的四年级学生)。

2、奖学金获得者可被推荐进入国外一流大学或一流学科实验室开展约6个月的科研实习,并最终能获取国外大学教授推荐信以便毕业后进入国外大学深造。科研实习时间以2019年夏季秋季为宜,其它时间必须以不影响毕业为前提。
3
、培育计划所指国外一流大学包括:(1)哈佛大学(Harvard University);(2)普林斯顿大学(Princeton University);(3)麻省理工学院(Massachusetts Institute of Technology);(4)斯坦福大学(Stanford University);(5)耶鲁大学(Yale University);(6)加州理工学院(California Institute of Technology); 7)加州大学伯克利分校(University of California-Berkeley);(8)哥伦比亚大学(Columbia University);(9)芝加哥大学(University of Chicago);(10)洛克菲勒大学(Rockefeller University)。

二、资助金额

奖学金年度资助数量不超过20人,每人资助3万元人民币。经济确实有困难的同学可额外申请追加。

 

三、申报条件

1 热爱国家,具有良好的政治素质,无违法违纪记录,具有为国家社会主义现代化建设服务的事业心和责任感。

2 品学兼优,成绩排名年级前10%,具有良好的科研素质和科研技能。

3 外语水平优秀。

 

四、补充申报项目

补充申报项目请见附件一课题组简介与学生要求

 

五、报名程序及注意事项

1117日前,申请人在教务处交换生系统登记报名。同时将个人简历发送至国际处邮箱yubin@nju.edu.cn,只能选择其中一个国外导师课题组报名。

2120日前,对申请学生进行面试并选拔。

3、通过选拔的学生由相关项目负责人推荐给外方,由外方决定是否接收并发送邀请函。

4、获取邀请函的学生填写奖学金申请表(从之前发布的郑钢奖学金通知中下载),连同邀请函复印件、购票信息复印件交至国际处805,由国际处协同郑钢基金会负责发放奖学金。

5、奖学金将分期发放,学生出国前领取50%,按期回国后领取剩余部分。

6、获奖学金的学生需严格遵守学校的公派出国制度,务必购买保险并填写《南京大学校际学生国际交流项目责任书》。

7、交流期满后,学生须按时归国返校,及时到所属院系和教务处办理返校注册手续,不得擅自延长交流期限或转往其他国家和地区交流。

8、被资助的学生结束科研实习回国后,须向国际合作与交流处提交一份《交流总结》,字数在1000字以上,回顾其科研实习经历,详细描述外方学校的学习、生活和管理等情况,体裁不限,须附实验室实习的电子图片资料。

 

六、申请流程

(一)登录教务处交换生管理系统

http://elite.nju.edu.cn/exchangesystem/index),点击交换项目开始申请,根据要求认真填写信息并提交。在遴选过程中请及时关注学生申请的实时状态和交换生管理系统发布的通知。

(二)院系审核(请自行提醒院系辅导员、教学院长及时审批)。

(三)院系审核通过后,登陆系统打印申请表(可先打印为PDF,再打印为纸质版),并在规定时间内递交至教务处。

(四)学校遴选并公布名单。

联系人:教务处苗老师

联系电话:89681635

电子邮箱:jwcexchange@nju.edu.cn

 


附件一

 

课题组简介与学生要求

 

 

1. 郑泠(Leo Cheng)老师

机构名称:哈佛医学院附属麻省总医院(Harvard Medical School, Massachusetts General Hospital

接收人数:1~2

学生要求:生命科学医学相关专业;人要聪明;了解NMR加分;了解MATLAB加分;实验动手能力强

课题组网址:https://www.nmr.mgh.harvard.edu/user/5277

研究方向:

In the past 15+ years, my laboratory has been focused on developing biomarkers for disease detections, diagnoses and patient prognostications. We initiated the research direction through our invention of “High-resolution Magic Angle Spinning Magnetic Resonance Spectroscopy” for intact biological tissue analysis, and extended our efforts to the development of disease metabolomics. From metabolomic developments, we have expended our research platform from intact tissue magnetic resonance spectroscopy to both inclusions of other biological fluids and employments of other analytic methods, including mass spectroscopy and mass spectrometry imaging. We are currently working on the investigations of human prostate can lung cancers, and these studies have further led us to the technical developments in medical imaging, including methods of using principles of hyperpolarized magnetic spectroscopy imaging and chemical exchange saturation transfer.

近期代表性论文:

[1] Vandergrift LA, Decelle, EA, Kurth J, Wu S, Fuss TL, DeFeo EM, Halpern EF, Taupitz M, McDougal WS, Olumi AF, Wu CL Cheng LL. Metabolomic Prediction of Human Prostate Cancer Aggressiveness: Magnetic Resonance Spectroscopy of Histologically Benign Tissue. Sci Rep. 2018 8:4997. DOI:10.1038/s41598-018-23177-w

[2]Dinges SS, Vandergrift LA, Wu S, Berker Y, Habbel P, Taupitz M, Wu CL, Cheng LL. Metabolomic Prostate Cancer Fields in HRMAS MRS-profiled Histologically Benign Tissue Vary with Cancer Status and Distance to Cancer. NMR Biomed. In press.

[3] Kaebisch E, Fuss TL, Vandergrift L, Toews K, Habbel P, Cheng LL. Applications of high resolution magic angle spinning MRS in biomedical studies I—cell line and animal models. NMR Biomed. 2017 Jun;30(6). doi: 10.1002/nbm.3700

[4] Kurreck A, Fuss T, Vandergrift L, Habbel P, Agar NYR, Cheng LL. Prostate Cancer Diagnosis and Characterization with Mass Spectrometry Imaging. Prostate Cancer Prostatic Dis. 2018; 21:297-305. doi: 10.1038/s41391-017-0011-z.

[5] Dietz C, Ehret F, Palmas F, Vandergrift LA, Jiang Y, Schmitt V, Dufner V, Habbel P, Nowak J, Cheng LL. Applications of high resolution magic angle spinning MRS in biomedical studies II—Human diseases. NMR Biomed. 2017 Nov;30(11). doi: 10.1002/nbm.3784.

 

 

2. Corey O'Hern老师

机构名称:耶鲁大学工程与应用科学系(Yale School of Engineering and Applied Science, Yale University

接收人数:1

学生要求:物理、工程专业;掌握BC/C++编程语言;

课题组网址:https://seas.yale.edu/faculty-research/faculty-directory/corey-s-ohern

研究方向:

Prof. O’Hern is a full Professor in the Departments of Mechanical Engineering & Materials Science and of Physics at Yale University. His research focuses on theoretical and computational studies of the structural and mechanical properties of soft and biological materials. In soft matter, his research has included computational studies of jammed packings of non-spherical and deformable particles. In his studies of biological systems, his work has focused on protein structure and design, modeling growing and dividing cells in tissues and tumors, and crowding in the bacterial cytoplasm. In his most recent studies of proteins, his group has shown that the cores of proteins are packed at packing fraction ϕ≈0.55, which is similar to that for rough, non-spherical particles that mimic the shapes of amino acids. We are using this metric to determine computational decoys that possess low total energies but do not occur in experimental studies.

近期代表性论文:

[1] A. H. Clark, M. D. Shattuck, N. T. Ouellette, and C. S. O’Hern, “Critical scaling of the yielding transition in sheared granular media,” Phys. Rev. E 97 (2018) 062901;

[2] J. C. Gaines, S. Acebes, A. Virrueta, M. Butler, L. Regan, and C. S. O’Hern, “Comparing side chain packing for soluble proteins, protein-protein interfaces, and transmembrane proteins,” Proteins: Structure, Function, and Bioinformatics 86 (2018) 581.

[3] J. Ketkaew, M. Fan, M. D. Shattuck, C. S. O'Hern, and J. Schroers, ``Structural relaxation kinetics defines embrittlement in metallic glasses,'' Scripta Materialia 149 (2018) 21.

[4] K. VanderWerf, W. Jin, M. D. Shattuck, and C. S. O’Hern, “Hypostatic jammed packings of non-spherical particles,” Phys. Rev. E 97 (2018) 012909;

e) Q. Wu, T. Bertrand, M. D. Shattuck, and C. S. O’Hern, “The response of jammed packings to thermal fluctuations,” Phys. Rev. E 96 (2017) 062902;

[5] J. Barès, D. Wang, D. Wang, T. Bertrand, D. Wang, C. S. O'Hern, and R. P. Behringer, ``Local and global avalanches in a two-dimensional sheared granular medium, '' Phys. Rev. E 96 (2017) 052902.